Empirical Models of Pressure and Density in Saturn’s Interior: Implications for the Helium Concentration, its Depth Dependence, and Saturn’s Precession Rate

نویسندگان

  • Ravit Helled
  • Gerald Schubert
  • John D. Anderson
چکیده

We present ’empirical’ models (pressure vs. density) of Saturn’s interior constrained by the gravitational coefficients J2, J4, and J6 for different assumed rotation rates of the planet. The empirical pressure-density profile is interpreted in terms of a hydrogen and helium physical equation of state to deduce the hydrogen to helium ratio in Saturn and to constrain the depth dependence of helium and heavy element abundances. The planet’s internal structure (pressure vs. density) and composition are found to be insensitive to the assumed rotation rate for periods between 10h:32m:35s and 10h:41m:35s. We find that helium is depleted in the upper envelope, while in the high pressure region (P & 1 Mbar) either the helium abundance or the concentration of heavier elements is significantly enhanced. Taking the ratio of hydrogen to helium in Saturn to be solar, we find that the maximum mass of heavy elements in Saturn’s interior ranges from ∼ 6 to 20 M⊕. The empirical models of Saturn’s interior yield a moment of inertia factor varying from 0.22271 to 0.22599 for rotation periods between 10h:32m:35s and 10h:41m:35s, respectively. A long-term precession rate of about 0.754” yr−1 is found to be consistent with the derived moment of inertia values and assumed rotation rates over the entire range of investigated rotation rates. This suggests that the long-term precession period of Saturn is somewhat shorter than the generally assumed value of 1.77×10 years inferred from modeling and observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of the Interiors of Jupiter and Saturn

Interior models of Jupiter and Saturn are calculated and compared in the framework of the three-layer assumption, which rely on the perception that both planets consist of three globally homogeneous regions: a dense core, a metallic hydrogen envelope, and a molecular hydrogen envelope. Within this framework, constraints on the core mass and abundance of heavy elements (i.e. elements other than ...

متن کامل

Tilting Saturn. I. Analytic Model

The tilt of Saturn’s spin axis to its orbit plane is 26N7, while that of Jupiter is only 3N1. We offer an explanation for this puzzling difference owing to gravitational perturbations of Saturn by the planet Neptune. A similarity between the precession period of Saturn’s spin axis and the 1:87 ; 10 yr precession period of Neptune’s slightly inclined orbit plane implicates a resonant interaction...

متن کامل

Secular resonance sweeping of the main asteroid belt during planet migration

We calculate the eccentricity excitation of asteroids produced by the sweeping ν6 secular resonance during the epoch of planetesimal-driven giant planet migration in the early history of the solar system. We derive analytical expressions for the magnitude of the eccentricity change and its dependence on the sweep rate and on planetary parameters; the ν6 sweeping leads to either an increase or a...

متن کامل

New Insights on Saturn’s Formation from Its Nitrogen Isotopic Composition

The recent derivation of a lower limit for the 14N/15N ratio in Saturn’s ammonia, which is found to be consistent with the Jovian value, prompted us to revise models of Saturn’s formation using as constraints the supersolar abundances of heavy elements measured in its atmosphere. Here we find that it is possible to account for both Saturn’s chemical and isotopic compositions if one assumes the ...

متن کامل

The three-dimensional structure of Saturn’s E ring

Saturn’s diffuse E ring consists of many tiny (micron and sub-micron) grains of water ice distributed between the orbits of Mimas and Titan. Various gravitational and non-gravitational forces perturb these particles’ orbits, causing the ring’s local particle density to vary noticeably with distance from the planet, height above the ring-plane, hour angle and time. Using remote-sensing data obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008